Ms. Leiyao Liao | Deep Learning Awards | Best Researcher Award

Ms. Leiyao Liao | Deep Learning Awards | Best Researcher Award

Ms. Leiyao Liao | Deep Learning Awards | Nanjing University Of Posts And Telecommunications | China

Ms. Leiyao Liao is a distinguished researcher and lecturer at the School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, renowned for her contributions to synthetic aperture radar (SAR) image understanding, target recognition, and explainable deep learning. She obtained her Doctorate in Electronic Science and Technology from Xi’an University of Electronic Science and Technology, where she developed a solid foundation in radar signal processing and mechanism-driven neural networks, and her Bachelor of Science from the same institution, focusing on communication and information systems. In her professional career, Ms. Liao has demonstrated exceptional leadership and technical expertise through her involvement in multiple national-level research projects, including those funded by the National Natural Science Foundation of China and the Central Military Commission, where she played key roles in advancing interpretable deep models for radar target analysis. Her primary research interests encompass synthetic aperture radar (SAR) target recognition, explainable deep learning, mechanism-driven neural networks, radar signal processing, and multimodal intelligent sensing, with a particular focus on small object detection and imbalanced recognition in complex environments. Ms. Liao’s research skills include advanced radar data analysis, model interpretability design, and deep probabilistic modeling, complemented by proficiency in simulation, signal processing, and algorithmic optimization. Her impactful body of work includes 16 Scopus-indexed publications, accumulating 187 citations with an h-index of 7, highlighting her growing international recognition. She has published extensively in high-impact journals such as IEEE Transactions on Geoscience and Remote Sensing (TGRS), IEEE Geoscience and Remote Sensing Letters (GRSL), IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), and IEEE Journal of Selected Topics in Signal Processing (JSTSP). Ms. Liao has received multiple academic honors and research commendations for her outstanding contributions to radar intelligence and interpretability, reflecting her dedication to bridging the gap between physical modeling and deep learning.

Professional Profiles: Scopus

Featured Publications 

  1. Liao, L. (2025). Integrated Physically Interpretable Model for SAR Target Recognition. IEEE Geoscience and Remote Sensing Letters. (Citations: 26)

  2. Liao, L. (2025). Research on Collision Access Method for Satellite Internet of Things Based on Bayliss Window Function. Sensors (Basel, Switzerland). (Citations: 0)

  3. Liao, L. (2024). EMI-Net: Interpretable Deep Network for SAR Target Recognition. IEEE Transactions on Geoscience and Remote Sensing. (Citations: 41)

  4. Liao, L. (2024). Based on Physical Solvability: Mechanism-Driven Neural Networks for Radar Target Understanding. Journal of Electronics. (Citations: 18)

  5. Liao, L. (2022). Interpretable Deep Probabilistic Model for HRR Radar Signal and Its Application to Target Recognition. IEEE Journal of Selected Topics in Signal Processing. (Citations: 52)

  6. Liao, L. (2023). Fusion-Based Multimodal SAR Target Classification Using Explainable Deep Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (Citations: 29)

  7. Liao, L. (2023). Mechanism-Driven Deep Learning for Small Object Detection in Complex Radar Scenarios. IEEE Access. (Citations: 21)

Dr. Zhiwei Zhang | Deep Learning Awards | Best Researcher Award

Dr. Zhiwei Zhang | Deep Learning Awards | Best Researcher Award 

Dr. Zhiwei Zhang, AVIC Manufacturing Technology Institute, China

Zhiwei Zhang, is a research engineer specializing in aviation manufacturing technology in China. He holds a bachelor’s and master’s degree in Automation from Shenyang Ligong University and earned his Ph.D. in Instrument Science and Technology from Yanshan University. His research focuses on digital radiographic and industrial CT nondestructive testing, computer vision, and ensemble learning algorithms for additive manufacturing. He has published seven SCI-indexed research papers and holds two authorized patents. Zhiwei Zhang also serves as a reviewer for the Journal of Computational Methods in Sciences and Engineering, reflecting his active contribution to the academic and industrial research community.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award: Zhiwei Zhang

Zhiwei Zhang, a highly skilled research engineer in aviation manufacturing technology, has demonstrated outstanding contributions in the fields of nondestructive testing, computer vision, and ensemble learning for additive manufacturing. His innovative research integrates cutting-edge technologies like digital radiography, industrial CT, and machine learning, addressing critical challenges in the aerospace industry.

🎓 Education

  • 🏫 Bachelor’s Degree in Automation – Shenyang Ligong University

  • 🎓 Master’s Degree in Automation – Shenyang Ligong University

  • 🧪 Ph.D. in Instrument Science and Technology – Yanshan University

💼 Work Experience

  • 👨‍🔧 Research Engineer – Specializing in aviation manufacturing technology in China

  • 🔬 Focus areas include:

    • Digital radiographic and industrial CT nondestructive testing

    • Computer vision

    • Ensemble learning algorithms for additive manufacturing

🏆 Achievements

  • 📄 Published 7 SCI-indexed research papers in high-impact journals

  • 🧾 Granted 2 authorized patents

  • 🧑‍⚖️ Reviewer for the Journal of Computational Methods in Sciences and Engineering

🎖️ Awards & Honors

  • 🏅 Recognized for contributions in nondestructive testing and AI applications in manufacturing
    (Note: Specific award titles not mentioned; can be added if provided.)

Publication Top Notes:

A Hybrid Framework for Metal Artifact Suppression in CT Imaging of Metal Lattice Structures via Radon Transform and Attention-Based Super-Resolution Reconstruction

Complex Defects Detection of 3-D-Printed Lattice Structures: Accuracy and Scale Improvement in YOLO V7

A Prediction Model for Maximum Stress of Additive Manufacturing Lattice Structures Based on Voting-Cascading

Deep convolution IT2 fuzzy system with adaptive variable selection method for ultra-short-term wind speed prediction

An improved meta heuristic IT2 fuzzy model for nondestructive failure evaluation of metal additive manufacturing lattice structure

An improved stacking ensemble learning model for predicting the effect of lattice structure defects on yield stress

Data-driven XGBoost model for maximum stress prediction of additive manufactured lattice structures

Adaptive Defect Detection for 3-D Printed Lattice Structures Based on Improved Faster R-CNN

A Hybrid Model Based on Jensen’s Inequality Theory for 3D Printed Lattice Structures Maximum Stress Prediction

Dr. Mohassin Ahmad | Deep Learning | Best Researcher Award

Dr. Mohassin Ahmad | Deep Learning | Best Researcher Award 

Dr. Mohassin Ahmad, Guru Nanak Institutions, India

Dr. Mohassin Ahmad is an accomplished academic and researcher currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Guru Nanak Institutions, Hyderabad, since September 2023. He earned his Ph.D. in Image Forensics from the National Institute of Technology Srinagar in 2024, following an M.Tech in Communication and Information Technology from the same institute and a Bachelor of Engineering degree in Electronics and Communication from the University of Kashmir. Dr. Ahmad has extensive teaching and research experience, including a previous tenure as Assistant Professor at NIT Jammu and Kashmir from 2013 to 2017. His research interests focus on digital image forensics, image tampering detection, and communication systems, with multiple publications in reputed international journals. He has contributed significantly to curriculum development and laboratory setup and is known for his dedication to student mentorship and academic excellence. Dr. Ahmad is also recognized for his Young Researcher Award for work in copy-move forgery detection algorithms. Fluent in English, Urdu, and Kashmiri, he combines strong technical expertise with effective communication and leadership skills.

Professional Profile:

GOOGLE SCHOLAR

ORCID

SCOPUS

Research and Academic Profile

Dr. Mohassin Ahmad has recently completed his PhD in Image Forensics (Electronics & Communication) from NIT Srinagar in 2024. His academic background is solid with a Master’s in Communication & Information Technology and a Bachelor’s in Electronics and Communication, showing a focused trajectory in communication technologies and electronics.

🎓 Education

  • PhD (2024) in Image Forensics (Electronics & Communication) — NIT Srinagar

  • M.Tech (2013) in Communication & Information Technology — NIT Srinagar (77.16%)

  • B.E (2010) in Electronics and Communication — University of Kashmir (79.3%)

💼 Work Experience

  • Assistant Professor, Guru Nanak Institutions, Hyderabad (ECE Dept.) — Since Sept 2023

  • Assistant Professor, Electronics & Communication Department, NIT Jammu & Kashmir — Sept 2013 to Aug 2017

    • Delivered lectures & coordinated courses

    • Established new labs & designed curriculum

    • Guided B.Tech & M.Tech research projects

    • Played key role in framing B.Tech & M.Tech curriculum

    • Mentored students with academic & personal support

🏆 Achievements & Awards

  • Young Researcher Award for paper:
    A comparative analysis of Copy-Move forgery detection algorithms”International Journal of Electronic Security and Digital Forensics, 2022

    • RSquarel score of 84, Award ID: RSL014

📚 Selected Research Publications

  • Detection and localization of image tampering with fused features — 2022

  • Comparative analysis of Copy-Move forgery detection algorithms — 2022

  • Novel image tamper detection using optimized CNN and firefly algorithm — 2021

  • Review on Digital Image Forgery Detection Approaches — 2021

  • FPGA implementation of convolution algorithms for image processing — 2019

Publication Top Notes:

Threats to medical diagnosis systems: analyzing targeted adversarial attacks in deep learning-based COVID-19 diagnosis

DS‐Net: Dual supervision neural network for image manipulation localization

A comparative analysis of copy-move forgery detection algorithms

Detection and localization of image tampering in digital images with fused features

A Comparative Analysis of Copy-Move Forgery Detection Algorithms

A novel image tamper detection approach by blending forensic tools and optimized CNN: Sealion customized firefly algorithm

Digital Image Forgery Detection Approaches: A Review

Dr. Peng Zhi | Deep Learning | Best Researcher Award

Dr. Peng Zhi | Deep Learning | Best Researcher Award 

Dr. Peng Zhi, Lanzhou University, China

Peng Zhi is a Ph.D. candidate in Computer Science at Lanzhou University, China, specializing in computer vision, deep learning, and autonomous driving. He earned his Bachelor’s and Master’s degrees in Computer Science and Technology from Lanzhou University in 2017 and 2020, respectively. His research focuses on LiDAR-camera fusion, 3D object detection, and AI applications in intelligent transportation systems. He has published several high-impact papers in renowned journals and conferences, contributing to advancements in autonomous vehicle perception and artificial intelligence. Additionally, he has co-authored the book Theories and Practices of Self-Driving Vehicles, further solidifying his expertise in the field.

Professional Profile:

ORCID

Summary of Suitability for the Best Researcher Award

Peng Zhi is a strong candidate for the Best Researcher Award, given his innovative contributions to computer vision, deep learning, and autonomous driving. As a Ph.D. candidate at Lanzhou University, he has been actively involved in research that enhances LiDAR-based 3D object detection, cross-domain generalization, and deep learning applications in autonomous systems.

🎓 Education

  • Ph.D. in Computer Application Technology (2021 – Present)
    Lanzhou University, Lanzhou, China
  • Master’s in Computer System Architecture (2017 – 2020)
    Lanzhou University, Lanzhou, China
  • Bachelor’s in Computer Science and Technology (2013 – 2017)
    Lanzhou University, Lanzhou, China

💼 Work Experience

  • Ph.D. Candidate & Researcher (2021 – Present)
    Lanzhou University, Lanzhou, China

    • Conducts advanced research in computer vision, deep learning, and autonomous driving
    • Publishes in top-tier journals and conferences
    • Develops LiDAR and camera fusion models for 3D object detection

🏆 Achievements & Contributions

  • Published Multiple Research Papers 📄 in top journals and conferences, including Tsinghua Science and Technology, Electronic Research Archive, and IEEE ITSC
  • Author of a Book on Self-Driving Vehicles 📘 Theories and Practices of Self-Driving Vehicles (Elsevier, 2022)
  • Developed DefDeN Model 🤖 A deformable denoising-based LiDAR and camera feature fusion model for 3D object detection
  • Research on Autonomous Driving 🚗 Focused on boundary distribution estimation and cross-domain generalization for LiDAR-based 3D object detection

🏅 Awards & Honors

  • Best Paper Award 🏆 at an International Conference on Intelligent Transportation Systems (ITSC)
  • Outstanding Researcher Award 🎖️ at Lanzhou University for contributions to AI and autonomous driving
  • National Scholarship 🏅 for academic excellence in computer science and AI research

Publication Top Notes:

Cross-Domain Generalization for LiDAR-Based 3D Object Detection in Infrastructure and Vehicle Environments

Mr. Shiraz Kaderuppan | Deep Learning Awards | Best Researcher Award

Mr. Shiraz Kaderuppan | Deep Learning Awards | Best Researcher Award 

Mr. Shiraz Kaderuppan, Newcastle University, Singapore

Shiraz is a Singaporean educator and data analytics enthusiast with extensive experience in enhancing deep neural network (DNN) architectures for feature recognition and extraction in image processing applications. With a solid background in software development and embedded systems programming, he has successfully developed desktop applications that integrate advanced image processing algorithms. Currently serving as an Associate Lecturer at Republic Polytechnic, Shiraz teaches courses in Financial Technology, Business Intelligence, and Distributed Ledger Technology while conducting professional training programs for various organizations in Microsoft Office applications. He is also an accomplished application developer, utilizing machine learning and artificial intelligence for predictive analytics and data analysis. His passion for empowering others extends to teaching Mathematics and Science at secondary and junior college levels, demonstrating his commitment to education and skill development in the IT field.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award: 

Shiraz S/O Kaderuppan stands out as a highly suitable candidate for the Best Researcher Award due to his extensive experience and impressive contributions to the field of data analytics and deep learning, particularly in image processing applications. His career reflects a strong commitment to advancing technology through research and education.

Education 🎓

  • Republic Polytechnic
    Diploma in Financial Technology, Business Intelligence & Distributed Ledger Technology
    Mar 2023 – Present

Work Experience 💼

  • Associate Lecturer
    Republic Polytechnic
    Mar 2023 – Present

    • Conducted courses for diploma students in Financial Technology, Business Intelligence, and DLT solutioning.
  • Corporate Trainer
    Self-Employed
    Jul 2014 – Present

    • Provided training for corporate clients and private individuals in advanced Microsoft Office applications and IBM products.
  • Application Developer
    Self-Employed
    May 2012 – Present

    • Developed desktop applications using C# .NET, interfacing with microcontrollers and implementing machine learning algorithms.
  • ML/AI Developer
    Self-Employed
    Sep 2008 – Present

    • Applied machine learning and deep learning algorithms for data analysis and forecasting.
  • Educator
    Self-Employed
    Aug 2010 – Present

    • Provided secondary school and JC-level tuition for Mathematics and Science subjects.
  • General Education Officer (Teacher)
    Ministry of Education
    Sep 2007 – Jan 2009

    • Taught Biology, Chemistry, and General Science at Tampines and Bedok North Secondary Schools.
  • Founder & Business Development Manager
    Self-Employed
    Jan 2005 – Jun 2007

    • Managed retail of scientific components globally and established a network of professional purchasers.

Achievements 🌟

  • Successfully conducted numerous training programs for companies and government bodies, focusing on advanced features of Microsoft Office for business intelligence and data analysis.
  • Developed and implemented desktop applications that effectively integrate hardware devices with advanced image processing algorithms.
  • Empowered project managers to utilize Microsoft Project for effective project planning and resource management.

Awards & Honors 🏆

  • Recognized for excellence in teaching and training methodologies at Republic Polytechnic and in corporate training programs.
  • Selected as a participant in the SkillsFuture for Digital Workplace Initiative for promoting digital literacy and skills enhancement in Singapore.

Publication Top Notes:

Θ-Net: A Deep Neural Network Architecture for the Resolution Enhancement of Phase-Modulated Optical Micrographs In Silico

O-Net: A Fast and Precise Deep-Learning Architecture for Computational Super-Resolved Phase-Modulated Optical Microscopy

Smart Nanoscopy: A Review of Computational Approaches to Achieve Super-Resolved Optical Microscopy