Shaogang Hu | Inspired Computing | Best Researcher Award

Prof. Shaogang Hu | Inspired Computing | Best Researcher Award

Prof. Shaogang Hu | Inspired Computing | University of Electronic Science and Technology | China

Prof. Shaogang Hu is a distinguished academic and researcher affiliated with the University of Electronic Science and Technology of China. Renowned for his work in neuromorphic computing, edge artificial intelligence, and spiking neural networks, he has established himself as a thought leader in energy-efficient computing systems. With a robust academic presence and strong publication record, Prof. Hu contributes significantly to the evolution of intelligent sensing technologies, particularly in the domains of hardware-software co-design, sensor fusion, and low-power AI processing. His interdisciplinary approach and collaboration with both academic and industrial partners position him as a leading figure in next-generation AI systems.

Academic Profile:

Scopus

Education:

Prof. Shaogang Hu holds a Ph.D. in Electronic Engineering, where he specialized in advanced chip architecture and intelligent signal processing. His academic training emphasized the development of computational models that bridge hardware limitations with evolving AI algorithms. Throughout his doctoral studies, Prof. Hu demonstrated a strong aptitude for interdisciplinary research, integrating concepts from neuroscience, electrical engineering, and computational theory. His academic background provided a solid platform for his current research into neuromorphic computing and low-energy embedded systems.

Experience:

Prof. Hu has gained significant experience in both academic and research environments. At the University of Electronic Science and Technology of China, he leads research teams focusing on neuromorphic circuits and edge AI applications. His academic role involves supervising graduate students, managing collaborative research projects, and developing experimental platforms for energy-efficient intelligent systems. He has worked closely with international research teams to push the boundaries of real-time computing, particularly in sensor-based systems, biomedical devices, and real-time video analytics. His active involvement in the broader academic community includes peer reviewing for indexed journals, technical committee memberships, and panel participation in various research forums.

Research Interest:

Prof. Shaogang Hu’s primary research interests include neuromorphic computing, spiking neural networks, energy-efficient AI chips, event-based sensors, and intelligent edge systems. He is particularly focused on optimizing hardware architectures to support real-time data processing with minimal energy consumption. His work in developing algorithms and chip systems that mimic neural behavior offers promising solutions for low-latency, low-power intelligent devices. Prof. Hu also explores hybrid models that combine frame-based and event-based sensor technologies to enhance system responsiveness in dynamic environments, such as robotics and smart surveillance systems.

Award:

Prof. Hu has been recognized for his contributions through various academic accolades, invitations to international conferences, and peer-reviewed editorial roles. His work has been consistently acknowledged for its originality and practical value in applied sciences. As a senior member of professional organizations such as IEEE and ACM, Prof. Hu continues to lead and contribute to the development of high-impact research. His efforts in mentoring early-career researchers and promoting scientific exchange further reflect his leadership in the academic and research landscape.

Selected Publications:

  • “YOLO-fall: a YOLO-based fall detection model with high precision, shrunk size, and low latency” (2025)

  • “An Image Encryption Algorithm Based on HNN with Memristor” (2025) – 1 Citation

  • “Spatio-Temporal Fusion Spiking Neural Network for Frame-Based and Event-Based Camera Sensor Fusion” (2024) – 4 Citations

  • “Floating-Point Approximation Enabling Cost-Effective and High-Precision Digital Implementation of FitzHugh-Nagumo Neural Networks” (2024) – 3 Citations

Conclusion:

Prof. Shaogang Hu is a highly accomplished researcher whose innovative contributions to neuromorphic systems and energy-efficient AI make him an outstanding candidate for this award. His scholarly output, leadership in collaborative research, and continued pursuit of intelligent sensing technologies have made a measurable impact in the field. With a focus on real-world application, Prof. Hu’s research advances the capabilities of AI in hardware-constrained environments. His academic integrity, technical leadership, and forward-looking vision make him not only a deserving recipient of this recognition but also a role model in shaping the future of intelligent systems research.

 

 

 

 

 

Assist Prof Dr. Nancy Alshaer | Quantum Award | Best Researcher Award

Assist Prof Dr. Nancy Alshaer | Quantum Award | Best Researcher Award 

Assist Prof Dr. Nancy Alshaer, Tanta University, Egypt

Nancy A. Alshaer is an Assistant Professor of Electronics and Communication Engineering at Tanta University’s Faculty of Engineering in Egypt. She earned her Ph.D. in 2020, specializing in optical free-space communication with quantum-key distribution, and was recognized with the Best Doctoral Thesis Award in Engineering Sciences from Tanta University for the 2020-2021 academic year. Dr. Alshaer has been actively involved in the project “Free Space Optical Communication with Quantum Light,” funded by the Science, Technology & Innovation Funding Authority (STIFA) of Egypt. Her research collaborations span notable institutions, including the National Institute of Laser at Cairo University, Nile University, Birmingham City University, and Taibah University. Her research interests encompass optical and wireless communications, quantum key distribution, quantum algorithms, quantum random number generation, tracking systems, wireless sensor networks, and edge computing.

 

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award:

Nancy A. Alshaer, an IEEE Member and Assistant Professor of Electronics and Communication Engineering at Tanta University, Egypt, stands as a strong candidate for the Best Researcher Award due to her exemplary contributions to the field of optical and wireless communications, particularly in quantum key distribution (QKD) and free-space optical (FSO) communication. Her academic journey, culminating in a Ph.D. in optical free-space communication with quantum-key distribution, and her recognition with the award for the best doctoral thesis in engineering sciences, highlight her research excellence.

Education

  • Ph.D. in Optical Free-Space Communication with Quantum-Key Distribution
    • Institution: Tanta University, Egypt
    • Year: 2020
    • Honors: Awarded for the best doctoral thesis in the field of engineering sciences for the academic year 2020-2021

Work Experience

  • Assistant Professor of Electronics and Communication Engineering
    • Department: Department of Electronics and Electrical Communication
    • Faculty: Faculty of Engineering
    • Institution: Tanta University, Egypt
    • Duration: Current
  • Research Associate
    • Project: “Free Space Optical Communication with Quantum Light”
    • Funding Authority: Science, Technology & Innovation Funding Authority (STIFA), Egypt
    • Duration: 2020 – 2022

Research Collaborations

  • National Institute of Laser, Cairo University, Egypt
  • Nile University, Egypt
  • Birmingham City University, UK
  • Taibah University, KSA

Publication top Notes:

Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)

Security Analysis of Gaussian and Discrete Modulations in FSO/CV-QKD Systems Employing LLO Under Phase and Amplitude Attacks

A review on pointing, acquisition, and tracking approaches in UAV-based fso communication systems

Performance Evaluation and Security Analysis of UAV-Based FSO/CV-QKD System Employing DP-QPSK/CD

Reliability and Security Analysis of an Entanglement-Based QKD Protocol in a Dynamic Ground-to-UAV FSO Communications System